Honors Algebra 1 Ch. 9 Study Guide **No Calculator** Name: Key Period:

Name the following polynomials according to the degree and the number of terms.

1.
$$4x^3 - 2x^2 + x + x^4$$

3.
$$2xy^2 - y$$
Cubic
binomial

Add or subtract the following polynomials.

5.
$$(5x^3 - x^2 + 2x + 5) + (4x^3 - 3x - 7)$$

 $9x^3 - 4x^2 - x - 2$

6.
$$(2x^5 + 2x^3 + 3x) - (3x^5 - 5x^4 + x^3 - 4x + 4)$$

 $2x^5 + 2x^3 + 3x - 3x^5 + 5x^4 - x^3 + 4x - 4$
 $-x^5 + 5x^4 + x^3 + 7x - 4$

Multiply the following expressions.

7.
$$(3x + 2)(3x - 1)$$

 $9x^2 - 3x + 6x - 2$
 $9x^2 + 3x - 2$

9.
$$(4x + 3)(3x^2 - 3x + 7)$$

 $12x^3 - 12x^2 + 28x + 9x^2 - 9x + 21$

8.
$$(6x-5)^2 \rightarrow (6x-5)(6x-5)$$

 $36x^2-30x-30x+25$
 $36x^2-60x+25$

10.
$$(3x-2)(3x+2)$$

 $9x^2 + 6x - 6x - 4$
 $9x^2 - 4$

Factor out a GCF of an Expression (Do Not Factor Further than taking out the GCF).

11.
$$9a^3 + 15a^2$$

 $3a^2(3a + 5)$

12.
$$10x^{5}y^{4} + 14x^{3}y^{8} - 2xy$$

 $2xy (5x^{4}y^{3} + 7x^{2}y^{7} - 1)$

Factor Completely.

13.
$$x^2 - x - 42$$
 ($\chi - 7\chi \chi + 6$)

14.
$$x^3 + 12x^2 + 11x$$

 $\times (\times^2 + 12 \times + 11)$
 $\times (\times + 11) \times + 1)$

15.
$$2x^5 - 18x^3$$

 $2x^3 (x^2 - 9)$
 $2x^3 (x + 3) (x - 3)$

16.
$$(x^3 + x^2)(6x + 16)$$

 $(x^2(x+1)+16(x-1)$

17.
$$25x^2 - 1$$
 (5 \times +1)(5 \times -1)

18.
$$x^2 - 22x + 121$$
 $(X - 11)^2$
 $6r$

$$\chi^{2}(\chi+1)+1G(\chi-1)$$
 (5\times+1)(5\times-1) (\times-11)^{2}
Cannot
factor further (\times-11)(\times-11)

Solve.
19.
$$x^{2} + 2x - 3 = 0$$
 20
 $(x + 3)(x - 1) = 0$
 $x + 3 = 0$ $x - 1 = 0$
 $x - 3 - 3$ $x + 1 + 1$
 $x = -3$ $x = 1$
22. $(x^{3} - 5x^{2})(+4x - 20) = 0$ 23
 $x^{2}(x - 5) + 4(x - 5) = 0$
 $x^{2}(x - 5) + 4(x - 5) = 0$
 $x^{2} + 4 = 0$ $x - 5 = 0$
 $x - 4 - 4$ $x = 5$
 $x - 4 - 4$ $x = 5$
 $x - 4 - 4$ $x - 5 = 0$
 $x - 4 - 4$ $x - 5 = 0$
 $x - 4 - 4$ $x - 5 = 0$
 $x - 4 - 4$ $x - 5 = 0$
 $x - 4 - 4$ $x - 5 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 12 = 0$
 $x - 4 - 4$ $x - 20 = 0$
 $x - 2 - 4$ $x - 3 = 0$
 $x - 2 - 3$ $x - 2 - 0$ $x + 3 = 0$
 $x - 2 - 3$ $x - 2 - 0$ $x + 3 = 0$
Vertical Motion

20.
$$2x^{2} - 11x - 21 = 0$$

 $(2x + 3)(x - 7) = 0$
 $2x - 3 = 0$
 $2x - 7 = 0$
 $3x - 2 = 3$
 $3x^{2} - 2x - 5 = 2x$
 $3x^{2} - 4x - 5 = 0$
 $3x - 2 + 3 = 0$
 $3x - 2 - 3 = 0$
 $3x - 2 + 3 = 0$
 $3x - 2 - 3 = 0$
 $3x - 2 + 3 = 0$
 $3x - 2 - 3 = 0$
 $3x - 3 - 3 =$

The height h (in feet) of a projectile can be modeled by $h(t) = -16t^2 + vt + h_0$

factor

where: t is time (sec) the object has been in the air v is the initial vertical velocity (in ft/sec) h_0 is the initial height (ft)

28. In a shot put event, an athlete throws the shot put with an initial vertical velocity of 38 feet per second and releases it from a height of 5 feet. After how many seconds does the shot put hit the ground?

$$0 = -16t^{2} + 38t + 5$$

$$0 = -(16t^{2} - 38t - 5)$$

$$0 = -(8t + 1)2t - 5)$$

$$0 = -(8t + 1)(2t - 5)$$

$$0 = 8t + 1 \quad 0 = 2t - 5$$

$$t = -\frac{1}{2} \sec(t - 5) = \frac{5}{2} \sec(t - 5)$$

29. A hickory nut falls from a branch that is 100 feet above the ground. After how many seconds does the hickory

$$0 = -16t^{2} + 0t + 100$$

$$0 = -(16t^{2} - 100)$$

$$0 = -(4t + 10)(4t - 10)$$

$$0 = 4t + 10$$

$$0 = 4t - 10$$

30. While standing on a ladder, you drop a paintbrush from a height of 25 feet. After how many seconds does the

$$0=4t+10$$
 $0=4t-10$

30. While standing on a ladder, you drop a paintbrush from a height of 25 feet. After how many seconds does the paint brush land on the ground?

$$0 = -16t^{2} + 0t + 25$$

$$0 = -(16t^{2} - 25)$$

$$0 = -(4t + 5)(4t - 5)$$

$$0 = 4t + 5$$

$$0 = 4t - 5$$

$$-5 + 5 + 5$$

$$-5 = 4t$$

$$4$$

$$4$$

$$t = \frac{5}{4} \sec c$$