Advanced Algebra with Trig Chapter 13 Review - Checkpoints

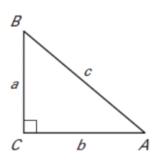
13.1

(1-2) Solve $\triangle ABC$ using the following diagram and the given measurements.

1.
$$A = 40^{\circ}, a = 13$$
 B=180-(40+90)
+an40= $\frac{13}{b}$ B=50°

$$b = \frac{13}{\tan 40} = 15.49$$

$$\sin 40 = \frac{13}{C}$$


$$C = \frac{13}{\sin 40} = 20.22$$

2.
$$B = 37^{\circ}, c = 18$$

 $A = 180 - (90 + 37)$
 $A = 53^{\circ}$

$$\cos 37 = \frac{9}{18}$$

$$1800 \times 37 = 9$$
 $14.38 = 9$

$$\sin 37 = \frac{b}{18}$$

(3-4) Let θ be an acute angle of a right triangle. Find the value of the other five trigonometric functions of θ .

3.
$$\sin \theta = \frac{5}{13}$$

$$\cos\theta = \frac{12}{13} \qquad \sec\theta = \frac{13}{12}$$
$$\tan\theta = \frac{5}{12} \qquad \cot\theta = \frac{12}{5}$$

$$CSC\theta = \frac{13}{5}$$

$$4. \quad \tan \theta = \frac{2}{5}$$

$$2^{2} + 5^{2} = C^{2}$$

$$\sqrt{29} = C$$

4.
$$\tan \theta = \frac{2}{5}$$

$$\sin \theta = \frac{2\sqrt{29}}{29}$$

$$\cos \theta = \frac{2\sqrt{29}}{29}$$

$$\cos \theta = \frac{5\sqrt{29}}{29}$$

$$\sec \theta = \frac{\sqrt{29}}{5}$$

$$COS\theta = \frac{5\sqrt{29}}{29}$$

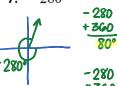
Seco =
$$\sqrt{29}$$
.

$$\cot \theta = \frac{5}{2}$$

5. A stepladder has an angle of elevation 60° with the front of the house. The length of the stepladder is 24 feet. At what height does the stepladder meet the house?

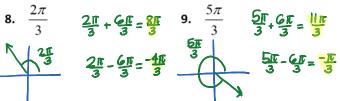
$$\sin 60 = \frac{\text{Jh}}{24}$$

20.78ft


13.2

(6-9) Sketch the angle. Then find one positive angle and one negative angle that is coterminal with the given angle.

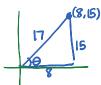
125°



(10-13) Convert the degree measure to radians or the radian measure to degrees.

10. 315°

$$315 \times \frac{\pi}{180} = \frac{7\pi}{4}$$


11. −260°

12.
$$\frac{\pi}{9} \times \frac{180}{10} = 20^{\circ}$$
 13. $\frac{14\pi}{15} \times \frac{180}{10} = 168^{\circ}$

13.3

(14-16) Use the given point on the terminal side of an angle $\, heta$ in standard position to evaluate the six trigonometric functions of θ .

14. (8,15)

$$\cos\theta = \frac{-7}{25}$$

$$tan\theta = \frac{21}{7}$$

16.
$$(-6,9)$$
 $\sqrt{117} = \sqrt{9 \cdot 13} = 3\sqrt{13}$

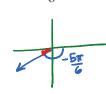
$$\cos\theta = \frac{-6^{-2}}{8\sqrt{13}} = \frac{2\sqrt{13}}{13}$$

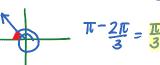
$$tan\theta = -\frac{9}{6} = -\frac{3}{2} \quad cot\theta = -\frac{2}{3}$$

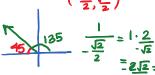
 $CSCO = \frac{3\sqrt{13}}{9/3} = \frac{\sqrt{13}}{3}$

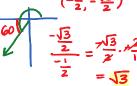
(17-22) Sketch the angle. Then find its reference angle.

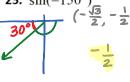
180-100=804


17. −100°

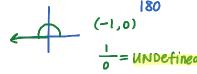

18. 320°

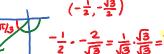

$$\frac{8\pi}{3} - 2\pi = \frac{8\pi}{3} - \frac{6\pi}{3} = \frac{2\pi}{3}$$



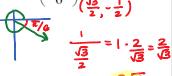


(23-30) Evaluate the function without using a calculator.


23. sec135° QUAD 2



26. csc(540°) 540-360



28. $\cot\left(-\frac{8\pi}{3}\right) - \frac{8\pi}{3} + \frac{2\pi}{3} = \frac{2\pi}{3}$ 29. $\tan\left(-\frac{3\pi}{4}\right) \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ 30. $\sec\left(\frac{11\pi}{6}\right)$

(31-38) Evaluate the expression without using a calculator. Give your answer in both radians and degrees.

31. sin⁻¹ 1

32. $tan^{-1}(-1)$

33. $\cos^{-1} 0$

34. $\cos^{-1}(-2)$

90° or #

-45° or - 1

90° or 1

undefined

31.
$$\sin^{-1} 1$$

90° or
$$\frac{tt}{2}$$

32.
$$tan^{-1}(-1)$$

33.
$$\cos^{-1} 0$$

34.
$$\cos^{-1}(-2)$$

35.
$$\sin^{-1} \left(\frac{\sqrt{3}}{2} \right)$$

36.
$$\sin^{-1}\frac{1}{2}$$

37.
$$\tan^{-1} \left(-\frac{\sqrt{3}}{3} \right)$$

38.
$$\cos^{-1}\left(-\frac{1}{2}\right) \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

(39-42) Solve the equation for θ .

39.
$$\cos \theta = -0.82;180^{\circ} < \theta < 270^{\circ}$$

 $\theta = \cos^{-1}(-0.82) = 145.08$

check $|\cos(2|4.92) = -0.82$

41.
$$\cos \theta = 0.25; 270^{\circ} < \theta < 360^{\circ}$$

 $\theta = \cos^{-1}(0.25) = 75.52$

13.5-13.6

40.
$$\sin \theta = 0.15;90^{\circ} < \theta < 180^{\circ}$$

 $\theta = \sin^{-1}(0.15)$
 $\theta = 8.63$

check! Sin(171.37) = 0.15 \square

42.
$$\tan \theta = -5.3;90^{\circ} < \theta < 180^{\circ}$$

 $\theta = +9.7^{\circ}(-5.3) = -79.32$

(43-48) Use the law of sines, the law of cosines, or the Pythagorean theorem to solve $\triangle ABC$. Hint: some of the "triangles" have no solutions and some have two solutions.

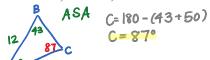
43.
$$A = 60^{\circ}, B = 84^{\circ}, c = 12$$

$$C = 180 - (84 + 60)$$

$$\frac{\sin 60}{9} = \frac{\sin 36}{12}$$

b = 20.30

45.
$$C = 40^{\circ}, a = 30, b = 30$$



SAS
$$C^2 = 30^2 + 30^2 - 2(30)(30)(0)(30)$$

 $C = 20.52$

$$\frac{\sin 24.57}{13} = \frac{\sin B}{18} \quad C = 180 - (24.57 + 35.15)$$

$$C = 120.28^{\circ}$$

46. $A = 50^{\circ}, B = 43^{\circ}, c = 12$

A
$$\frac{\sin 40}{20.52} = \frac{\sin A}{30}$$
 B=70°
A=70.0°

47.
$$a = 8, b = 5, c = 7$$

SSS

$$5^2 = 7^2 + 8^2 - 2(7)(8) \cos B$$

 $25 = 113 - 112 \cos B$
 $.79 = \cos B$
 $38.21^9 = B$
Sin38.21
 $5 = 7$

$$A = (80 - (38.21 + 60) = 81.79^{\circ})$$
 $C = 60^{\circ}$

$$A = \frac{81 \text{ c}}{12} = \frac{\sin 87}{\text{b}} = \frac{\sin 87}{12} = \frac{\sin 50}{\text{a}}$$

$$b = 8.20 \qquad a = 9.21$$

$$48. C = 112^{\circ}, b = 5, a = 10$$

$$5AS \qquad c^{2} = 5^{2} + 10^{2} - 2(5X10)\cos 112$$

$$C = 12.75$$

$$\frac{\sin 112}{12.75} = \frac{\sin 8}{5} \qquad A = 180 - (112 + 21.33)$$

$$A = 40.67^{\circ}$$