londay, May 05, 2014 :02 PM

Honors Algebra

Chapter 10 Review - Solving Quadratics

Period: Period:

Solve using any method. Note: you must use each method at least twice.

1.
$$x^2 + 4x - 5 = 0$$

 $(x + 5)(x - 1) = 0$

$$X+5=0$$
 $X-1=0$

2.
$$5x^2 = 45$$

$$\sqrt{\chi^2} = \sqrt{9}$$

FACTOPING

(x-6)(x-4)=0

5. $x^2 - 10x + 24 = 0$

QUAD FORMULA

3.
$$3x^2 - 5x - 2 = 0$$

$$X = \frac{5 \pm \sqrt{(-5)^2 - 4(3\chi - 2)}}{2(3)}$$

$$X = 5 \pm \sqrt{25 + 24}$$

$$X = 5 \pm \sqrt{49} \Rightarrow X = 5 \pm 7$$

5.
$$x^2 - 2x - 15 = 0$$

$$(X-5)X+3)=0$$

SOVAPE POOT

4.
$$x^2 - 3 = 4$$

COMPLETING THE 7. $x^2 + 8x = -4$ SQUAPE

 $X^2 + 8x + 16^2 - 4 + 16$ $\frac{8}{2} = 4^2 = 16$

6PAPHING 8.
$$x^2 + 6x + 9 = 0$$

(x-intercept & vertex)

9. $2x^2 - 7x = -3$

9.
$$2x^2 - 7x = -3$$

$$\frac{+3+3}{2x^2-7x+3=0}$$

$$X = \frac{1}{2} 3$$

X= -4 ± 112 X2-7.46,-0.54

 $\sqrt{(x+4)^2} = \sqrt{12}$

 $X+4=\pm\sqrt{12}$

QUAP FORMULA

10.
$$x^2 - 8x + 12 = 0$$

$$a=1$$
 $b=-8$ $c=12$
 $X = +8 \pm \sqrt{(-8)^2 - 4(1)(2)}$

$$X = 8 \pm \sqrt{64 - 48}$$

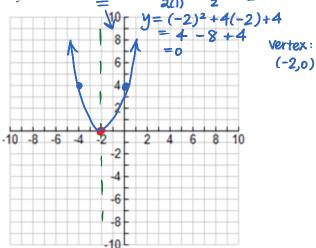
$$X = 8 \pm \sqrt{16}$$

COMPLETING THE

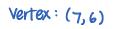
11.
$$x^2 - 2x = 10$$
 SQUAPE

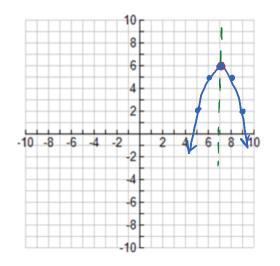
$$\frac{X^{2}-2X+1}{\sqrt{(X-1)^{2}}=\sqrt{|1|}} = \frac{-2}{2}=(-1)^{2}=\frac{1}{2}$$

GRAPHING

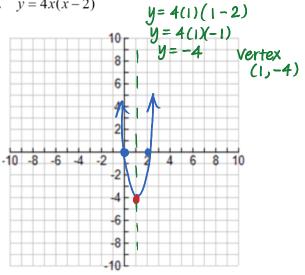

12.
$$x^2 + 6x + 2 = 0$$

X%-5.65,-.35

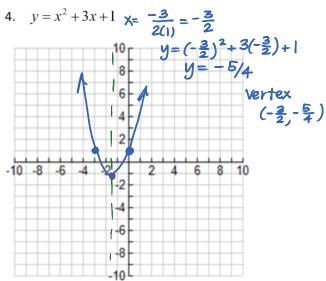

$$X = 8 \pm \sqrt{16}$$
 $X = 8 \pm 4 = 2, 6$


Graph the following functions with at least three accurate points. Be sure to label the vertex and axis of symmetry.

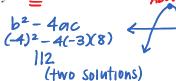
1.
$$y = x^2 + 4x + 4$$
 $X = \frac{-4}{2(1)} = \frac{-4}{2} = -2$



2.
$$y = -(x-7)^2 + 6$$



3.
$$y = 4x(x-2)$$


4.
$$y = x^2 + 3x + 1$$

Tell whether the vertex of the graph of the function lies above, below or on the x-axis. Explain your reasoning.

5.
$$y = -15x^2 + 10x - 25$$

6.
$$y = -3x^2 - 4x + 8$$

6.
$$y = -3x^2 - 4x + 8$$
 $b^2 - 4ac$
 $(-4)^2 - 4(-3)(8)$

7. $y = 9x^2 - 24x + 16$
 $b^2 - 4ac$
 $(-24)^2 - 4(9)(16)$

[and Solution] A

[and Solution]

O (one solution)

(one solution)

 $-1400 \; (n_{\text{SolutionS}}) \; \checkmark \; (two \; \text{SolutionS})$ Write a function of the form $y = ax^2 + bx + c$ whose graph has one x-intercept.

ANY PERFECT SQUAPE TRINOMIAL

Ex:
$$y = x^2 + 2x + 1$$

 $y = x^2 + 6x + 9$
 $y = x^2 - 4x + 4$