Honors Algebra 1
9.6 Day 2 - Applications

Name: Keriod:
Pe y

Ball Toss: A ball is tossed into the air from a height of 8 feet with an initial velocity of 8 feet per second. Find the time t (in seconds) it takes for the object to reach the ground by solving the equation $-16 t^{2}+8 t+8=0$.

Note Board Design: You are designing a note board that is made of corkboard and dry erase board. The area of the cork board is 6 square feet.
a) Write an equation of the area of the corkboard
\qquad

$$
\begin{aligned}
& -16 t^{2}+8 t+8=0 \\
& -8\left(2 t^{2}-t-1\right)=0 \\
& -8(2 t+1)(t-1)=0
\end{aligned}
$$

$$
2 t+1=0 \quad t-1=0
$$

$$
\frac{-1-1}{2 t=-1} \quad t=1 \sec
$$

$$
t \neq<\frac{x}{2} \text { neg. time }
$$

in standard form.
$x(x+1)=6 \Rightarrow x^{2}+x=6$
in standard form.
$x(x+1)=6 \Rightarrow x^{2}+x=6$
in standard form.
$x(x+1)=6 \Rightarrow x^{2}+x=6$
b) Find the dimensions of the corkboard.

$$
\begin{aligned}
& (x+3)(x+2)=0 \\
& x+3=0 \quad x+2=0
\end{aligned}
$$

c) Find the area of the dry erase board.

$$
\begin{align*}
& A=2 \times 1.5 \\
& A=3 \mathrm{ft}^{2} \tag{I}
\end{align*}
$$

Hockey Schedule: In a hockey tournament, every team plays every other team exactly once. For n teams, the number of hockey games that must be scheduled is given by the expression $\frac{n^{2}-n}{2}$. Ray's hockey league schedules 36 games. How many teams are there in Ray's league?

Area of a Rectangle: The length of a rectangle is 9 times the width. The area of the rectangle is 81 square meters. What are the dimensions of the rectangle?

$$
\begin{array}{rl}
9 x=27 \\
x=3 & 27 \times 3 \mathrm{~m}
\end{array} \quad \begin{aligned}
& A=9 x(x) \\
& 81
\end{aligned}=9 x^{2} \quad \geqslant 0=9(x-3)(x+3)
$$

$$
\begin{aligned}
& 81=9 x^{2} \\
& 0=9 x^{2}-81
\end{aligned} \quad \begin{array}{rl}
1 & 1 \\
0=x-3 & 0=x+3 \\
x=3 & x-3
\end{array}
$$

$$
0=9\left(x^{2}-9\right)
$$

Factor:

1. $6 x^{2}-36 x y^{2}+12 x^{4} y$
2. $21 x y+35 y$
3. $56 x^{3}+32 x^{2}-16 x$

$$
6 x\left(x-6 y^{2}+2 x^{3} y\right)
$$

$$
7 y(3 x+5)
$$

$$
8 x\left(7 x^{2}+4 x-2\right)
$$

4. $2 x^{2}-17 x+21$

$$
(2 x-3)(x-7)
$$

5. $3 x^{2}-10 x-13$
6. $7 x^{2}-33 x+20$

$$
(7 x-5)(x-4)
$$

Solve for the variable:

1. $-x^{3}+x^{2}+20 x=0$

$$
\begin{aligned}
& -x\left(x^{2}-x-20\right)=0 \\
& -x(x-5)(x+4)=0 \\
& -x=0 \quad x-5=0 \quad x+4=0 \\
& x=0 \quad x=5 \quad x=-4
\end{aligned}
$$

4. $3 x^{2}+6 x=189$

$$
\begin{gathered}
3 x^{2}+6 x-189=0 \\
3\left(x^{2}+2 x-63\right)=0 \\
3(x+9 x x-7)=0 \\
x+9=0 \quad x-7=0 \\
x=-9 x x=7
\end{gathered}
$$

Going way back!
2.

$$
\begin{aligned}
& 6 x^{2}-28 x=10 \\
& 6 x^{2}-28 x-10=0 \\
& 2\left(3 x^{2}-14 x-5\right)=0 \\
& 2(3 x+1)(x-5)=0 \\
& 1 \\
& 3 x+1=0 \quad x-5=0 \\
& \begin{array}{l}
-1-1 \\
x=-1 / 3
\end{array} x=5
\end{aligned}
$$

5. $3 x^{2}+3=x^{2}-3 x+2$

$$
\begin{aligned}
& \frac{-x^{2}-2-x^{2}+3 x-2}{2 x^{2}+3 x+1=0} \\
& (2 x+1)(x+1)=0 \\
& 2 x+1=0 \quad x+1=0 \\
& x=-\frac{1}{2} \quad x=-1
\end{aligned}
$$

3.

$$
\begin{aligned}
& -x^{2}+12 x+64=0 \\
& -1\left(x^{2}-12 x-64\right)=0 \\
& -1(x-16)(x+4)=0 \\
& x-16=0 \quad x+4=0 \\
& x=16 \quad x=-4
\end{aligned}
$$

Find the sum or difference (in standard form). Then name the polynomial by degree and \#ं of terms.

1. $\left(3 x^{4}+6 x^{2}+2 x\right)+\left(-x^{2}+x^{4}\right)$
2. $(x+4)-\left(2 x^{2}-x+4\right)$

$$
4 x^{4}+5 x^{2}+2 x
$$

3. $x\left(x^{2}-4\right)+\left(5 x^{3}+1\right)$

$$
\begin{gathered}
x^{3}-4 x+5 x^{3}+1 \\
6 x^{3}-4 x+1
\end{gathered}
$$

$$
6 x^{3}-4 x+1
$$

