Algebra H
 8.5-8.6 Review - Day 2

Name:

Period:

Quick Warm-up: Write the equation of the exponential function based on the following tables

$$
\frac{9}{6}=\frac{3}{2}
$$

Application of Exponential Growth/Decay Models

$\begin{array}{ll}\text { Example 1 -Compound Interest } & r=8 \% \\ 0.08\end{array}$ You deposit $\$ 500$ in an account that pays 8% annual interest compounded yearly. What is the account balance after 6 years?
A) In this situation would we add the rate (growth) or subtract the rate (decay)?
growth
B) Using the formula, write the equation that represents this equation:

Example 2 -Cell phone value:
You purchase a cell phone for $\$ 125$. The value of the cell phone decreases by about 20% annually.
A) In this situation would we add the rate (growth) or subtract the rate (decay)?
decay
B) Using the formula, write the equation that represents this equation:

$$
\begin{aligned}
& y=C(1+r)^{t} \\
& y=500(1+.08)^{t} \rightarrow y=500(1.08)^{t}
\end{aligned}
$$

$$
\begin{aligned}
& \\
& y=c(1-r)^{t} \\
& y=125(1-0.2)^{t} \Rightarrow y=125(0.8)^{t}
\end{aligned}
$$

C) How much would be in the account after $6=t$ years? $y=500(1.08)^{6}$

$$
\$ 793.44
$$

D) How much would the $\$ 500$ be worth after 35 years?

$$
y=\frac{500(1.08)^{35}}{1 \pm \neg \operatorname{An} \cap 1}
$$

C) How much would the cell phone be worth after 6 years?

$$
\begin{array}{r}
y=125(0.8)^{6} \\
y=\$ 32.77
\end{array}
$$

D) Would the value of the phone ever be $\$ 0$? Explain why or why not

$$
\begin{aligned}
& \text { no } \rightarrow \text { because you can't } \\
& \text { put any value in for } t \text { \& }
\end{aligned}
$$

$$
y=\frac{500(1.08)^{\cdots}}{\$ 7392.67}
$$

no \rightarrow because you can't

Example 3 - Computer growth:
One computer industry expert reported that there were about 600 million computers in use worldwide in 2001 and that the number was increasing at an annual rate of 10%.
a. Write a function that models the number of computers in use over time

$$
\begin{aligned}
& y= 600(1+0.1)^{t} \leftarrow y \text { is in millions } y=600,000,000(1.1)^{t} \\
& y=600(1.1)^{t}
\end{aligned}
$$

b. Use the function to predict the number of computers that will be in use worldwide in $\underline{2012}$ if the growth rate continues.

$$
\begin{aligned}
& \begin{array}{ll}
\text { rate continues. } \\
y=600(1.1)^{11} & 171187,000,000
\end{array} \\
& y=11711.87 \text { million }
\end{aligned}
$$

c. What could cause this fate of increase to change? Do you think it is greater or less than 10% today?

Example 4-Tennis Tournament

Each year the local country club sponsors a tennis tournament. Play starts with 128 participants. During each round, half of the players are eliminated.
a. Write a function that models the number of participants as each round is played.

$$
y=128(1-0.5)^{t} \Rightarrow y=128(.5)^{t}
$$

b. How many players would there be after 5 rounds?

$$
y=128(0.5)^{5}
$$

Example 5 - Home purchase

You have inherited land that was purchased for $\$ 30,000$ in 1960. The value of the land increased approximately 5% per year.
a. Write a function that models the value of the house over time

$$
y=30000(1.05)^{t}
$$

b. How much would you expect the land to be worth in 2011 ?

$$
\begin{array}{ll}
y=30000(1.05)^{51} & 2011 \\
y=361,223.09 & -\frac{1960}{51}
\end{array}
$$

c. The actual value of the land in 2011 was actually $\$ 250,000$. What could have caused the difference?

