7.5 apply properties of logarithms

PART I

Properties of Logarithms

- · Product Property: log mn = log m + log n
- Quotient Property: $\log_x \frac{m}{n} = \log_x m \log_x n$
- · Power Property: log m = n log m

EX: use
$$[10943 \approx 0.792]$$
 and $[10947 \approx 1.404]$ to evaluate

a)
$$\log_4(\frac{3}{7}) = \log_4 3 - \log_4 7 = 0.792 - 1.404 = [-0.612]$$

quotient

b)
$$109421 = 1094(7.3) = 10947 + 10943 = 1.404 + 0.792$$

 $4? = 21$ product $= 2.196$

c)
$$\log_4 49 = \log_4(7^2) = 2\log_4 7 = 2(1.404) = 2.808$$

Try: use 10965 ≈ 0.898 & 10968 ≈ 1.161 to evaluate.

a)
$$\log_6(\frac{5}{8}) = \log_6 5 - \log_6 8$$

0.898 - 1.161
 -0.263

$$log_{6}(5.8) = log_{6}5 + log_{6}8$$

 $0.898 + 1.161$
 12.0597

c)
$$\log_6 64 = \log_6 (8)^2$$
 d) $\log_6 125 = \log_6 (5^3)$
 $2\log_6 8$ $3\log_6 5$
 $2(1.161) = 3(.898)$
 2.322

Expand
$$\log_6(\frac{5x^3}{y})$$

$$\log_6 5x^3 - \log_6 y \quad \text{(quotient)}$$

$$\log_6 5 + \log_6 x^3 - \log_6 y \quad \text{(product)}$$

$$\log_6 5 + 3\log_6 x - \log_6 y \quad \text{(power)}$$

Which of the following is equivalent to log9+31092-1093?

PART 2:

CHANGE OF BASE FORMULA

Logs with any base other than 10 or e can be written using the following formula:

$$\log_c a = \frac{\log a}{\log c}$$
 or $\log_c a = \frac{\ln a}{\ln c}$

Practice! Evaluate:
$$8?=14$$
 $26?=9$ $0098=1.292$ 0098 $14 \frac{\log 14}{\log 8} \approx 1.269$ 00926 0.674 0098 0.674 0098 0.674