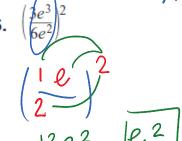
Practice

For use with pages 492-498

Simplify the expression.

1.
$$e^{-5} \cdot e^2$$

 $\frac{e^{-3}}{\left[\frac{1}{e^{3}}\right]}$


2.
$$e^3 \cdot e^{-3}$$

3. $(e^4)^{-3}$

$$\frac{\chi^3}{\sqrt{2}}$$

$$\frac{e^{-12}}{e^{12}}$$

4.
$$(2e^3)^2$$

6.
$$\left(\frac{8e^2}{2e^5}\right)^{-1}$$

7.
$$3e^x \cdot 2e^{4x}$$

8.
$$\sqrt{9e^4} \cdot 2e^{-3}$$

9.
$$\frac{e^3}{e^{x+3}}$$

$$e^{3-(x+3)}$$

$$e^{-x}$$

Use a calculator to evaluate the expression. Round the result to three decimal places.

10.
$$e^7$$

11.
$$e^{-3/2}$$

12.
$$e^{0.6}$$

13.
$$e^{\sqrt{3}}$$

Tell whether the function is an example of *exponential growth* or *exponential decay*.

11
$$f(x) = 4a^{2x}$$

15
$$f(y) = e^{-5x}$$

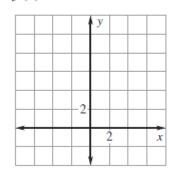
16
$$f(y) = 6e^{-x}$$

exponential decay.

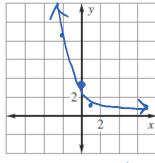
14.
$$f(x) = 4e^{2x}$$

15.
$$f(x) = e^{-5x}$$

16.
$$f(x) = 6e^{-x}$$


17.
$$f(x) = \frac{1}{4}e^{4x}$$

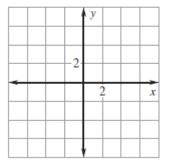
18.
$$f(x) = \frac{1}{8}e^{-x}$$


19.
$$f(x) = -e^{-x/2}$$

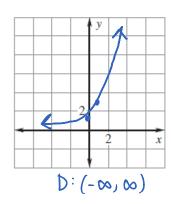
= $-e^{-\frac{1}{2}X}$
= $-\frac{1}{\sqrt{e^x}}$

Graph the function. State the domain and range.

20.
$$f(x) = 3e^x$$

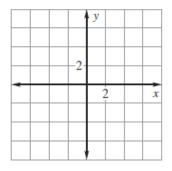


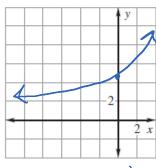
21.
$$f(x) = 3e^{-x}$$



$$R: (0, \infty)$$

 $D: (-\infty, \infty)$


22.
$$f(x) = -e^x + 3$$


23.
$$f(x) = 2e^{x-1} +$$

24.
$$f(x) = \frac{1}{2}e^{x-2} - 3$$

23.
$$f(x) = 2e^{x-1} + 1$$
 24. $f(x) = \frac{1}{2}e^{x-2} - 3$ **25.** $f(x) = e^{2x+1} + 2$

In Exercises 26 and 27, use the following information.

Finance You deposit \$2200 in an account that pays 3% annual interest. After 15 years, you withdraw the money. »p

26. What is the balance if the interest is compounded quarterly?
$$15 \times 4 = 60$$

$$y = 2200 \left(1 + .03\right)^{15 \times 4} y = 4$$

27. What is the balance if the interest is compounded continuously?

$$\frac{1}{100} = \frac{1}{100} = \frac{1}$$