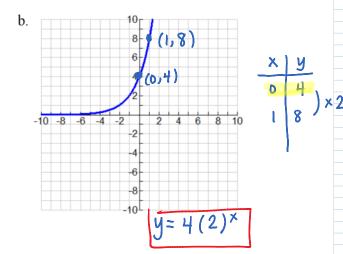
Advanced Algebra with Trig

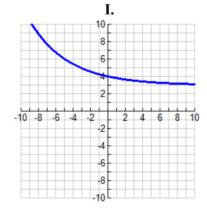

7.1-7.4 Study Guide

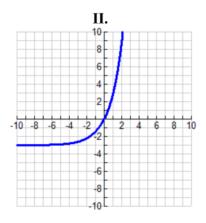
1. Write the exponential equation represented below:

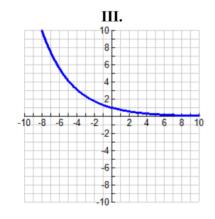
a.						
x	-1	0	1	2	23	34
f(x)	27	9	3	1	1/3	1/9
	х.	y=	9(글)	×	

c.								
X	-3	-2	-1	0	1			
f(x)	2	10	50	250	1250			
y=250(5)*								

Name: Kem Period:




2. Match the graph with it's function.


a.
$$f(x) = 3 \cdot 2^{x-3}$$

b.
$$g(x) = \left(\frac{3}{4}\right)^x$$

a.
$$f(x) = 3 \cdot 2^{x-3}$$
 b. $g(x) = \left(\frac{3}{4}\right)^x$ c. $h(x) = \left(\frac{4}{5}\right)^x + 3$ ____

3. Simplify the expression:

a.
$$4e^3 \cdot e^5$$

b.
$$(-4e^{2x})^3$$

b. $(-4e^{2x})^3$

c.
$$\frac{e^{5}}{4e}$$

d.
$$\frac{9e^{6x}}{2e^{4x}}$$

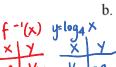
- 4. Evaluate the logarithm:
 - a. $\log_5 8 \ 2^2 = 8$ b. $\log_5 5 \ 5^2 = 5$ c. $\log_6 1 \ 6^2 = 1$

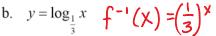
- d. $\log_1 27/1$? = 2.7

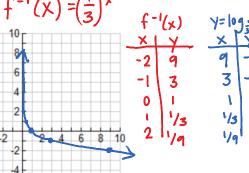
4. Evaluate the logarithm:

a.
$$\log_2 8$$
 2? = 8

c.
$$\log_6 1 6 ? = 1$$


a.
$$\log_2 8$$
 2? = 8 b. $\log_5 5$ 5? = 5 c. $\log_6 1$ 6? = 1 d. $\log_{\frac{1}{3}} 27(\frac{1}{3})$? = 27


3


- 5. Graph the function. State the domain, range and equation of the asymptote.

a.
$$y = \log_4 x$$

domain: (0,00) range: (-00,00)

domain: (0,00) range: (-00,00) asymptote: X=0

6. CALC OK. A population of a town has grown at a rate of 3.1% per year ever since it was founded. The current population is approximately 10,000 people. Predict the population of the town 4 years from now.

$$f = 3.1\% = 0.031$$

$$Q = 10,000$$

$$y = a(1+r)^{t}$$

 $y = 10000(1+0.031)^{4}$
 $\approx \sqrt{11.299 \text{ people}}$

- 7. CALC OK. The Morgans invested \$100,000 in the stock market with a 2.5% annual interest rate compounded monthly.
 - a. How much will the Morgans' stock be worth in 7 years?

$$P = 100,000$$

$$r = 2.5\% = 0.025$$

$$y = P(1 + \frac{r}{n})^{nt}$$

worth in 7 years?

$$y = P(1 + \frac{r}{n})^{n}t$$

 $y = 1000000(1 + \frac{0.025}{12})^{12.7}$
 $\approx \sqrt{\$119,102.94}$

- b. What if the interest was compounded continuously. How much will the Morgans' stock be worth in 7 years?

 $y = Pe^{rt}$ $y = 1000000 e^{0.025 \cdot 7}$ ≈ \$119,124.62

8. CALC OK. A company bought a piece of machinery valued at \$55,000 in 2005. It depreciates at a rate of 8% per year. What will the value of the machinery be in 2017? decay 1

8. CALC OK. A company bought a piece of machinery valued at \$55,000 in 2005. It depreciates at a rate of 8% per year. What will the value of the machinery be in 2017?

$$a = 55,000$$

 $r = 8\% = 0.08$
 $t = 2017$
 $\frac{2005}{12}$

$$y=a(1-r)^{t}$$

 $y=55,000(1-0.08)^{12}$
 $\approx $20,221.65$