
Honors Algebra 1 5.6 Fit a Line to Data Name: Period: Key

Scatter Plots:

Negative Correlation Positive Correlation

Relatively No Correlation

Independent and Dependent Variables:

the dependent variable DEPENDS on the independent variable (y)

Example 1: The number of minutes spent driving and the miles you have left to your destination.

Correlation = <u>negative correlation</u> Correlation =
The second contraction is a second contraction of the second contraction in the second contraction is a second contraction of the second contraction in the second contraction is a second contraction of the second contraction in the second contraction is a second contraction of the second

Dependent = # of miles

Example 2: The size of your shoe and your favorite TV show.

Correlation = no Correlation

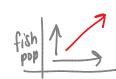
Independent = _____

Dependent = _____

Example 3: Your grade point average and the number of hours you spend on Facebook.

Correlation = <u>negative</u> <u>Correlation</u>

Independent = $\frac{\text{# ot hours Spent on FB}}{\text{Independent}}$


Dependent = $\frac{GPA}{(y)}$

Challenge: As the Ocean Levels fall the fish population decreases

Correlation = Positive correlation

Independent = $\frac{\text{Ocean level }(x)}{}$

Independent =
$$\frac{\text{Ocean level }(x)}{\text{Dependent}}$$

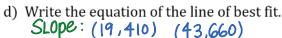
Dependent = $\frac{\text{Fish population }(y)}{\text{Dependent}}$

Line of Best Fit:

- When data shows a positive or negative correlation, you can model the trend in the data using a best fit (linear regression)
- There should be approximately half the points <u>above</u> and half the points <u>below the line</u>

Example 5: The table below shows the fat content and calories for various burgers.

- Fat (g) 19 34 39 39 43 31 35 Calories 410 580 590 570 640 680 660
 - a) Identify the independent and dependent variables.


Independent: fat (q)

Dependent: Calories

- b) Label your axes and then make a scatter plot.
- c) Describe the correlation of the data:

As the number of grams of fat ... Increase, the

calories also increase

$$M = \frac{Y_2 - Y_1}{X_2 - X_1} = \frac{660 - 410}{43 - 19} = \frac{250}{24} = 10.42$$

(19,410) $y-y_1=m(x-x_1)$ y-410=10.42(x-19)

800

700

600 500

400

300 200

100

y=10.42x+212.02

e) Explain the meaning of the y-intercept. (0,212.02)

For Og of fat, there are

f) Explain the meaning of the slope.

For every 1 g ot fat added, there are 10.42 cal added

there are 10.42 cal added

For Og of fat, there are 210.95 calories in a burger

g) A new burger containing 28 grams of fat is being introduced. What would you expect the number of calories to be?

$$y=10.42(28) + 212.02$$

 $y=503.78$ calories

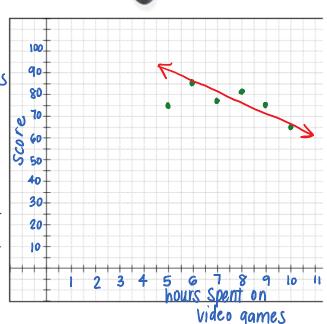
Example 6: The table shows the number of hours students spent playing video games and the score they received on their tests.

Ŋ	Scores on Tests	85	77	75	75	80	65
*	Hours Spent Playing Video Games	6	7	9	5	8	10

a) Identify the independent and dependent variables.

Independent: hours spent playing video games

Dependent: Scores on test


- b) Label your axes and then make a scatter plot.
- c) Describe the correlation of the data:

As the number of hours of playing video games... _

increases, our scores decrease

d) Write the equation of the line of best fit.

$$y = -2.2x + 92.67$$

- e) Explain the meaning of the y-intercept.

 If a Student Spends

 0 hours playing video

 games, they'll earn

 a 92.6%
- f) Explain the meaning of the slope.

 a Student's Score will decrease by 2.2% for every hour they play video games
- g) Predict a reasonable test score for playing video games for 12 hours. $V = -\lambda \cdot \lambda \cdot (|\lambda|) + 9\lambda \cdot \lambda = 0$

g) Predict a reasonable test score for playing video games for 12 hours. $V = -\lambda \cdot \lambda (|\lambda| + 9\lambda \cdot 67)$

$$y = -2.2(12) + 92.67$$

66.27°/.

h) If Brian received a 50 on his test, what is a reasonable number of hours he played video games for?

$$50 = -2.2x + 92.67$$

$$-92.67 - 92.67$$

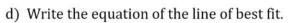
$$-42.67 = -2.2x$$

$$-2.2 - 2.2$$

19.40 hours

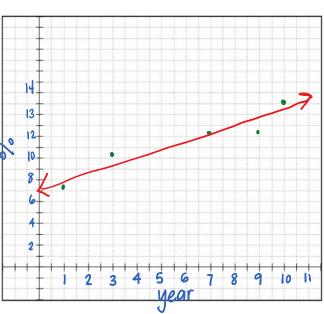
Example 7: The table shows results of a study on obesity in America. The data shows the percentage of Americans, aged 18-29 who are classified as obese during the years 2000 - 2010. (Let x = 0 be 2000).

Year (x)	Percent (y)
2001	7.1
3 2003	10.1
7 2007	12.1
9 2009	12.1
10 2010	13.5



a) Identify the independent and dependent variables.

Independent: <u>year</u>
Dependent: <u>percent</u>


- b) Label your axes and then make a scatter plot.
- c) Describe the correlation of the data:

as the # of years since 2000 increases, so does the % of obesity

$$y = 0.61X + 7.32$$

e) Explain the meaning of the y-intercept. In 2000, 7.32% of

f) Explain the meaning of the slope.

the % of people w/ obesity

e) Explain the meaning of the y-intercept.

f) Explain the meaning of the slope.

g) Predict the percentage of 18-29 year olds who will be classified as obese in 2017. 1A = 0.61(17) + 7.32

$$y = 0.61(17) + 7.32$$

 $y = 17.69\%$

h) If the percentage of 18-29 year olds is 22%, what year is it based off of the line of best fit?

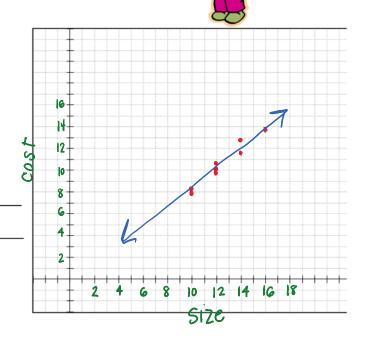
$$x = 24.06$$

Example 8: This table shows pizza size (cheese only) compared to the cost for a few different pizza places. [Dominos, Pizza hut, Homemade Pizza Co]

Size(in)	10	12	14	16	10	12	12	14
Cost(\$)	7.99	9.69	11.69	13.69	8.00	10.00	10.95	12.95

a) Identify the independent and dependent variables.

Independent: Size (in)


Dependent: COS† (\$)

- b) Label your axes and then make a scatter plot.
- c) Describe the correlation of the data:

as the size of pizza increases, so does the cost

d) Write the equation of the line of best fit.

 $y = 0.99 \times -1.71$

- e) Explain the meaning of the y-intercept.
- f) Explain the meaning of the slope.

e) Explain the meaning of the y-intercept.

g) If you wanted to buy a 20 in pizza, what would the cost of the pizza be?

$$y = .99(20) - 1.71$$
 $$ [8.09]$

h) If you spent \$11.11, what size pizza did you buy?

$$\begin{array}{r}
 ||.|| = .99x - |.7| \\
 +|.7| & +|.7| \\
 \hline
 ||2.82 = .99x \\
 \hline
 .99 & .99
 \end{array}$$

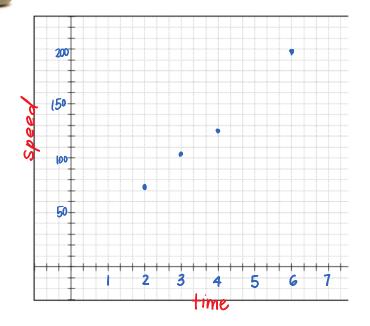
$$12.95 = X$$

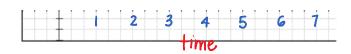
213 inch pizza

Example 9: Brian threw a rock down from a very high cliff. The speed of the rock and various times are given in this table:

Speed(ft/s)	71	103	135	199
Time(sec)	2	3	4	6

a) Identify the independent and dependent variables.


Independent: time (x)


Dependent: Speed (y)

- b) Label your axes and then make a scatter plot.
- c) Describe the correlation of the data:

time 1, the speed also increases

d) Write the equation of the line of best fit.

- e) Explain the meaning of the y-intercept.
- f) Explain the meaning of the slope.

g) When was the speed 210 ft/s?

h) How fast was the rock going when it hit the ground at t =7seconds?