11.3A Tuesday, May 20, 2014 Solving <u>Padical Equations</u>	
$ \begin{array}{c} \underbrace{\text{Solving}}{(1-1)} & \underbrace{\text{Columbra}}{(1-1)} & \underbrace{\text{Columbra}}{(1-1)} \\ \underbrace{\text{(I} \times -7 = 0}{+7 + 1} & \text{check!} \\ \underbrace{(\sqrt{x})^2_{=}(7)^2} & \sqrt{49 - 7 = 0} \\ \underbrace{(\sqrt{x})^2_{=}(7)^2} & 7 - 7 = 0 \\ \underbrace{(\sqrt{x})^2_{=}(7)^2} & 0 = 0 \\ \end{array} $	$ \begin{array}{c} \textcircled{blacklinetwidth{2}{2}} & 2\sqrt{x} - 8 = 0 \\ $
$ \begin{array}{c} 3 \\ 3 \\ 12 \\ \hline x \\ +3 \\ +3 \\ +3 \\ +3 \\ 12 \\ \hline 12 \\ 4 \\ -3 = 0 \\ (\sqrt{x})^2 = (\frac{1}{4})^2 \\ \frac{12}{4} \\ -3 = 0 \\ \sqrt{16} \\ -3 = 0 \\ (\sqrt{x})^2 = (\frac{1}{4})^2 \\ \frac{12}{4} \\ -3 = 0 \\ 0 = 0 \\ 0 = 0 \\ \end{array} $	(a) $4\sqrt{x-7} + 12 = 28$ check! -12 -12 $4\sqrt{23-7} + 12 = 28$ $4\sqrt{x-7} = 16$ $4\sqrt{16} + 12 = 28$ 4 + 4 4 + 4 + 12 = 28 $(\sqrt{x-7})^2 = 4^2$ $16 + 12 = 28$ $(\sqrt{x-7})^2 = 4^2$ $16 + 12 = 28$ x-7 = 16 $28 = 28$
$(f) 2\sqrt{x+6} + 9 = 21 -9 -9 -9 -9 -2\sqrt{2} -9 -9 -2\sqrt{2} -9 -21 -2\sqrt{30+6} + 9 = 21 -2\sqrt{36} + 9 = 21 -2\sqrt{36} + 9 = 21 -2\sqrt{36} + 9 = 21 -2\sqrt{2 - 6} + 9 = 21 -2\sqrt{2 - 6} + 9 = 21 -2\sqrt{2 - 6} -6 -2 -21 = 21\sqrt{2} -2\sqrt{2 - 6} -21 = 21\sqrt{2} -2\sqrt{2 - 6} -21 = 21\sqrt{2} -2\sqrt{2 - 6} -2\sqrt{2} -2\sqrt{2 - 6} -2\sqrt{2 - 6} -2\sqrt{2} -2\sqrt{2} -2\sqrt{2 - 6} -2\sqrt{2} -2$	$ \widehat{(3)} \sqrt{x-5} + 7 = 12 check! \\ -7 - 7 \sqrt{30-5} + 7 = 12 \\ (\sqrt{x-5})^2 = 5^2 \sqrt{25} + 7 = 12 \\ x-5 = 25 5+7 = 12 \\ +5 + 5 12 = 12 \\ x = 30 \\ x = 3$