10.7 The Discriminant

 $-b \pm \sqrt{b^2 - 4ac} \implies b^2 - 4ac$

the discriminant

tells us how many solution (x-int, root, zero) the graph has

when	• If b^2 - $4ac$ is a perfect Square like $y = x^2 + 6x + 5$ a = 1 $b = 6$ $c = 5b^2 - 4ac6^2 - 4(1115)36 - 2016Solutions$	← →
$b^2-4ac>0$ (discriminant is positive)	olf b^2 -4ac is <u>NOT</u> a perfect square like $y = \chi^2 + 3\chi + 1$ a = 1 $b = 3$ $c = 1b^2-4ac 2 IPPATIONAL3^2-4(1)(1) SolutionS$	<
when $b^2 - 4ac = 0$	Like $y = x^2 + 2x + 1$ a = 1 $b = 2$ $c = 1b^2 - 4ac SOLUTION2^2 - 4(1X1) (vertex)4 - 4 = 0$	←
when $b^2 - 4ac < 0$ (discriminant is negative)	Like $y = 2x^2 + x + 5$ a=2 $b=1$ $c=5b^2 - 4ac 0 SOLUTIONS ^2 - 4(2)(5) ^2 - 40 = -39$	

Find the value of the discriminant. Then describe how many roots (& what kind, if possible) there are.

$$b^{2} - 4ac$$
 $4^{2} - 4(4)(1)$
 $16 - 16$

1 SOLVTION

$$\chi^2 + 3\chi + 3 = 0$$

 $a=1$ $b=3$ $c=3$

$$b^{2} - 4ac$$
 $3^{2} - 4(1)(3)$
 $9 - 12$

-3

$$38X^{2} + 18X - 5 = 0$$

2 PATIONAL SOLUTIONS