State whether there is a maximum or minimum. Then, find the value.

* The max or min is always@ the vertex !

$a=1 \quad b=7 \quad c=8$
(3) $-2 x^{2}-x+10$

MIN@ $y=-\frac{17}{4}$

$$
\text { MAX@ } y=\frac{81}{8}
$$

$$
x=\frac{-b}{2 a}=\frac{-7}{2(1)}=-\frac{7}{2}
$$

$$
x=\frac{-b}{2 a}=\frac{1}{2(-2)}=-\frac{1}{4}
$$

$y=\left(-\frac{7}{2}\right)^{2}+7\left(-\frac{7}{2}\right)+8$
$y=-2\left(-\frac{1}{4}\right)^{2}-\left(-\frac{1}{4}\right)+10$
$y=\frac{49}{4}-\frac{49}{2} \cdot \frac{2}{2}+8 . \frac{4}{4}$
$y=-2\left(\frac{1}{16}\right)+\frac{1}{4}+10$
$=\frac{49}{4}-\frac{98}{4}+\frac{32}{4}=-\frac{17}{4}$

$$
\begin{aligned}
& y=-\frac{2}{16}+\frac{1}{4} \cdot \frac{4}{4}+10 \cdot \frac{16}{16} \\
& y=-\frac{2}{16}+\frac{4}{16}+\frac{160}{16} \Rightarrow y=\frac{162}{16}=\frac{81}{8}
\end{aligned}
$$

Fishing spiders can propel themselves across water and leap vertically from the surface of the water. During a vertical jump, the height of the body of the spider can be modeled by the function $y=-4500 x^{2}+820 x+43$ where x is the duration (in seconds) of the jump and y is the height (in millimeters) of the spider above the surface of the water. After how many seconds does the spider's body reach its maximum height? What is the maximum height?

$$
x=\frac{-820}{2(-4500)}=.0911 \mathrm{sec} \quad \begin{aligned}
y & =-4500(.0911)^{2}+820(.0911)+43 \\
& =80.36 \mathrm{~mm}
\end{aligned}
$$

