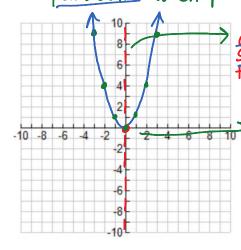
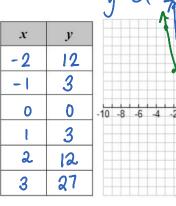

Honors Algebra 1 10.1 - Graphing Simple Quadratics


Name: Key

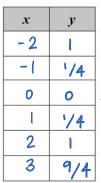
Opener!

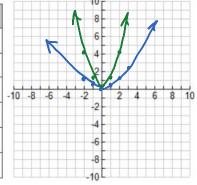
Work with your partner to complete the table for the function $y=x^2$. Think about how that table would translate to a parabola: u-Shaped graph graph. Describe the shape and any unique features.

у	x
4	-2
1	-1
0	0
ı	1
4	2
9	3
16	4


> axis (or line) of

* 10 yertex: lowest (min)
point on graph highest (max)
point on graph


Let's Explore!


Complete the table and sketch the graph of the following functions. Include observations about how each graph relates back to the parent quadratic equation $y = x^2$. Hint: it may help to sketch in the graph of the parent function.

1. $y = 3x^2$

y=3(-2	$)^{2} \Rightarrow 3(4) = 12^{2}$	2. $y = \frac{1}{4}$	x^2
	8-	x	
	6-	-2	
	2	-1	1
10 -8 -6 -4 -2	2 4 6 8 10	0	(
	4	l	١
	-6-	2	
	-8	3	-
	10 L		

Observations: · Y-values are tripled · narrower or skinnier

Observations: • wider or fatter · y-values are multiplied by 1/4

Summary! if my leading coefficient is greater than 1, graph looks · if my L.C. is less than 1, graph looks wider

· if my L.c. is less than 1, graph looks mider

· every y-value gets multiplied by L.C.

3.
$$y = x^2 + 5$$

	, ,	M 10 /
x	y	8- //
-2	9	6-4
-1	Ç	2
0	5	-10 -8 -6 -4 -2 - 2 4 6 8 1
l	6	-2-
2	9	-6
3	14	-8

4. $y = x^2 - 4$

		10,
x	y	↑ \ 8 / \
-2	0	6-4-
~	-3	2
0	-4	-10 -8 -6 -4 -2 2 4 6 8 10
l	-3	\-2
2	6	-6
3	5	-8
		-10L

Observations: • down 4 · vertex @ (0,-4)

Summary! • when my last term is positive, shifting 1 negative, shifting 1

A few more for practice!

5.
$$y = \frac{1}{2}x^2 - 4$$

Predictions about the graph: Wider graph, y-values mult. by

		1
x	y	8
-2	-2	6
	X	4- 1
-1	-3.5	2 /
0	-4	-10 -8 -6 -4 -2 - 2/ 4 6 8 10
l	-3.5	-2
3	~ Q	-6-
3	.5	8-
	1.5	-10

Vertex @ (0,4)

6. $y = -5x^2 + 1$ Skinnier graph. Y-values by -5

Predictions about the graph: $y = -5(-2)^2 + 1$ $y = -5(-1)^2 + 1$ y = -5(4) + 1 y = -5(1) + 1 x y y = -20 + 1 y = -5 + 1 y = -5 + 1 y = -19 y =-19

L.C. is negative, graph flips over

vertex @(0,1)

Think about it!

How would the graph of the function $y = x^2 + 6$ be affected if the function

vertex@(0,6)

vertex@(0,2)

(0, G)

(0,6) Shifting V 4 units (0,2)